Shahine Bouabid

Shahine Bouabid

Kernel Methods, Gaussian processes, Climate emulation

I am interested in developing simple and interpretable statistical machine learning methodologies to address challenges that arise in climate science. My recent work has focused on statistical downscaling and earth system emulation using physically-constrained models. The tools I use mostly draw from the theory of reproducing kernel Hilbert spaces and Gaussian processes, for which I enjoy a fond theoretical interest.

I am currently in the 3rd year of my PhD, supervised by Dino Sejdinovic, Tom Rainforth and Athanasios Nenes as part of the iMiracli innovative training network of aerosols-cloud interactions and machine learning.

Publications

2023

  • S. Bouabid , J. Fawkes , D. Sejdinovic , Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge, arXiv preprint arXiv:2301.11214, 2023.

2022

  • S. Bouabid , D. Watson-Parris , D. Sejdinovic , Bayesian inference for aerosol vertical profiles, in NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2022.
  • S. Bouabid , D. Watson-Parris , S. Stefanović , A. Nenes , D. Sejdinovic , AODisaggregation: toward global aerosol vertical profiles, arXiv preprint arXiv:2205.04296, 2022.
  • D. Watson-Parris , Y. Rao , D. Olivié , Ø. Seland , P. Nowack , G. Camps-Valls , P. Stier , S. Bouabid , M. Dewey , E. Fons , . others , ClimateBench v1. 0: A Benchmark for Data-Driven Climate Projections, Journal of Advances in Modeling Earth Systems, vol. 14, no. 10, e2021MS002954, 2022.

2021

  • S. L. Chau , S. Bouabid , D. Sejdinovic , Deconditional Downscaling with Gaussian Processes, in Advances in Neural Information Processing Systems (NeurIPS), 2021.

2020

  • P. Harder , W. Jones , R. Lguensat , S. Bouabid , J. Fulton , D. Quesada-Chacón , A. Marcolongo , S. Stefanović , Y. Rao , P. Manshausen , D. Watson-Parris , NightVision: Generating Nighttime Satellite Imagery from Infra-Red Observations, in NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2020.
  • S. Bouabid , M. Chernetskiy , M. Rischard , J. Gamper , Predicting Landsat Reflectance with Deep Generative Fusion, in NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2020.