I am an Associate Professor and Fellow of Jesus College. My research interests are in graphical models, causality and algebraic statistics.
Publications
2023
T. S. Richardson
,
R. J. Evans
,
J. M. Robins
,
I. Shpitser
,
Nested Markov properties for acyclic directed mixed graphs, Annals of Statistics, vol. 51, no. 1, 334–361, 2023.
@article{richardson23nested,
title = {Nested Markov properties for acyclic directed mixed graphs},
author = {Richardson, Thomas S and Evans, R. J. and Robins, James M and Shpitser, Ilya},
journal = {Annals of Statistics},
volume = {51},
number = {1},
pages = {334--361},
year = {2023},
publisher = {Institute of Mathematical Statistics},
archiveprefix = {arXiv},
eprint = {1701.06686}
}
R. J. Evans
,
V. Didelez
,
Parameterizing and simulating from causal models, Journal of the Royal Statistical Society, Series B (with discussion), 2023.
@article{evans23simulating,
title = {Parameterizing and simulating from causal models},
author = {Evans, R. J. and Didelez, Vanessa},
journal = {Journal of the Royal Statistical Society, Series B (with discussion)},
year = {2023},
archiveprefix = {arXiv},
eprint = {2109.03694}
}
R. J. Evans
,
Latent-free equivalent mDAGs, Algebraic Statistics, 2023.
@article{evans23latent,
title = {Latent-free equivalent mDAGs},
author = {Evans, R. J.},
journal = {Algebraic Statistics},
year = {2023},
archiveprefix = {arXiv},
eprint = {2209.06534}
}
2022
K. Kusi-Mensah
,
R. Tamambang
,
T. Bella-Awusah
,
S. Ogunmola
,
A. Afolayan
,
E. Toska
,
L. Hertzog
,
W. Rudgard
,
R. J. Evans
,
O. Omigbodun
,
Accelerating progress towards the sustainable development goals for adolescents in Ghana: a cross-sectional study, Psychology, Health & Medicine, vol. 27, no. sup1, 49–66, 2022.
@article{kusi22accelerating,
title = {Accelerating progress towards the sustainable development goals for adolescents in Ghana: a cross-sectional study},
author = {Kusi-Mensah, Kwabena and Tamambang, Rita and Bella-Awusah, Tolulope and Ogunmola, Segun and Afolayan, Adeola and Toska, Elona and Hertzog, Lucas and Rudgard, William and Evans, R. J. and Omigbodun, Olayinka},
journal = {Psychology, Health \& Medicine},
volume = {27},
number = {sup1},
pages = {49--66},
year = {2022},
publisher = {Taylor \& Francis}
}
J. Fawkes
,
R. J. Evans
,
D. Sejdinovic
,
Selection, ignorability and challenges with causal fairness, in Conference on Causal Learning and Reasoning, 2022, 275–289.
@inproceedings{fawkes22selection,
title = {Selection, ignorability and challenges with causal fairness},
author = {Fawkes, Jake and Evans, R. J. and Sejdinovic, Dino},
booktitle = {Conference on Causal Learning and Reasoning},
pages = {275--289},
year = {2022},
organization = {PMLR},
archiveprefix = {arXiv},
eprint = {2202.13774}
}
B. Yao
,
R. J. Evans
,
Algebraic properties of HTC-identifiable graphs, Algebraic Statistics, vol. 13, no. 1, 19–39, 2022.
@article{yao22algebraic,
title = {Algebraic properties of HTC-identifiable graphs},
author = {Yao, Bohao and Evans, R. J.},
journal = {Algebraic Statistics},
volume = {13},
number = {1},
pages = {19--39},
year = {2022},
publisher = {Mathematical Sciences Publishers}
}
2021
R. J. Evans
,
Dependency in DAG models with hidden variables, in Uncertainty in Artificial Intelligence, 2021, 813–822.
@inproceedings{evans21dependency,
title = {Dependency in DAG models with hidden variables},
author = {Evans, R. J.},
booktitle = {Uncertainty in Artificial Intelligence},
pages = {813--822},
year = {2021},
organization = {PMLR},
archiveprefix = {arXiv},
eprint = {2106.07523}
}
E. Černis
,
R. J. Evans
,
A. Ehlers
,
D. Freeman
,
Dissociation in relation to other mental health conditions: An exploration using network analysis, Journal of Psychiatric Research, vol. 136, 460–467, 2021.
@article{cernis21dissociation,
title = {Dissociation in relation to other mental health conditions: An exploration using network analysis},
author = {{\v{C}}ernis, Emma and Evans, R. J. and Ehlers, Anke and Freeman, Daniel},
journal = {Journal of Psychiatric Research},
volume = {136},
pages = {460--467},
year = {2021},
publisher = {Elsevier}
}
2020
R. J. Evans
,
Model selection and local geometry, Annals of Statistics, no. 6, 3514–3544, 2020.
@article{evans20,
author = {Evans, R. J.},
journal = {Annals of Statistics},
title = {Model selection and local geometry},
year = {2020},
issue = {6},
pages = {3514--3544},
archiveprefix = {arXiv},
eprint = {1801.08364}
}
Z. Hu
,
R. J. Evans
,
Faster algorithms for Markov equivalence, in Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI-20), 2020, vol. 2020.
@inproceedings{hu20,
author = {Hu, Z. and Evans, R. J.},
title = {Faster algorithms for {M}arkov equivalence},
booktitle = {Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI-20)},
volume = {2020},
year = {2020}
}
2019
R. J. Evans
,
T. Richardson
,
Smooth, identifiable supermodels of discrete DAG models with latent variables, Bernoulli, vol. 25, no. 2, 848–876, 2019.
@article{evans19,
author = {Evans, R. J. and Richardson, T.\\~{}S.},
journal = {Bernoulli},
volume = {25},
number = {2},
pages = {848--876},
title = {Smooth, identifiable supermodels of discrete {DAG} models with latent variables},
year = {2019}
}
E. S. Allman
,
H. B. Cervantes
,
R. J. Evans
,
S. Hoşten
,
K. Kubjas
,
D. Lemke
,
J. A. Rhodes
,
P. Zwiernik
,
Maximum likelihood estimation of the latent class model through model boundary decomposition, Algebraic Statistics, vol. 10, no. 1, 51–84, 2019.
@article{allman:19,
title = {Maximum likelihood estimation of the latent class model through model boundary decomposition},
author = {Allman, Elizabeth S and Cervantes, Hector Banos and Evans, R. J. and Ho{\c{s}}ten, Serkan and Kubjas, Kaie and Lemke, Daniel and Rhodes, John A and Zwiernik, Piotr},
journal = {Algebraic Statistics},
volume = {10},
number = {1},
pages = {51--84},
year = {2019}
}
2018
R. J. Evans
,
Margins of discrete Bayesian networks, Annals of Statistics, vol. 46, no. 6A, 2623–2656, 2018.
@article{evans:18,
author = {Evans, R. J.},
title = {Margins of discrete {B}ayesian networks},
journal = {Annals of Statistics},
volume = {46},
number = {6A},
pages = {2623--2656},
archiveprefix = {arXiv},
eprint = {1501.02103},
year = {2018}
}
I. Shpitser
,
R. J. Evans
,
T. S. Richardson
,
Acyclic Linear SEMs Obey the Nested Markov Property, in Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence (UAI-18), 2018, vol. 2018.
@inproceedings{shpitser:18,
title = {Acyclic Linear {SEMs} Obey the Nested {M}arkov Property},
author = {Shpitser, Ilya and Evans, R. J. and Richardson, Thomas S},
booktitle = {Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence (UAI-18)},
volume = {2018},
year = {2018}
}
2017
C. Nowzohour
,
M. Maathuis
,
R. J. Evans
,
P. Bühlmann
,
Structure learning with bow-free acyclic path diagrams, Electronic Journal of Statistics, vol. 11, no. 2, 5342–5374, 2017.
@article{nowzohour:17,
title = {Structure learning with bow-free acyclic path diagrams},
author = {Nowzohour, Christopher and Maathuis, Marloes and Evans, R. J. and B{\"u}hlmann, Peter},
journal = {Electronic Journal of Statistics},
volume = {11},
number = {2},
pages = {5342-5374},
year = {2017}
}
2016
R. J. Evans
,
Graphs for margins of Bayesian networks, Scandinavian Journal of Statistics, vol. 43, no. 3, 625–648, 2016.
@article{evans:mdags,
author = {Evans, R. J.},
journal = {Scandinavian Journal of Statistics},
title = {Graphs for margins of {B}ayesian networks},
archiveprefix = {arXiv},
eprint = {1408.1809},
volume = {43},
issue = {3},
pages = {625--648},
year = {2016}
}
R. B. A. Silva
,
R. J. Evans
,
Causal Inference through a Witness Protection Program, Journal of Machine Learning Research, vol. 17, no. 56, 1–53, 2016.
@article{silva:evans:16,
title = {Causal Inference through a Witness Protection Program},
author = {Silva, R. B. A. and Evans, R. J.},
journal = {Journal of Machine Learning Research},
volume = {17},
issue = {56},
pages = {1--53},
year = {2016},
archiveprefix = {arXiv},
eprint = {1406.0531}
}
A. Hitz
,
R. J. Evans
,
One-Component Regular Variation and Graphical Modeling of Extremes, Journal of Applied Probability, vol. 53, no. 3, 733–746, 2016.
@article{hitz:evans:16,
title = {One-Component Regular Variation and Graphical Modeling of Extremes},
author = {Hitz, A. and Evans, R. J.},
journal = {Journal of Applied Probability},
year = {2016},
volume = {53},
issue = {3},
pages = {733-746}
}
2015
R. J. Evans
,
V. Didelez
,
Recovering from Selection Bias using Marginal Structure in Discrete Models, in Proceedings of Causal Inference Workshop, Uncertainty in Artificial Intelligence, 2015.
@inproceedings{evans:15,
author = {Evans, R. J. and Didelez, V.},
booktitle = {Proceedings of Causal Inference Workshop, Uncertainty in Artificial Intelligence},
title = {Recovering from Selection Bias using Marginal Structure in Discrete Models},
year = {2015}
}
R. J. Evans
,
Conditional distributions and log-linear parameters, Electronic Journal of Statistics, vol. 9, no. 1, 475–491, 2015.
@article{evans15,
author = {Evans, R. J.},
journal = {Electronic Journal of Statistics},
title = {Conditional distributions and log-linear parameters},
volume = {9},
issue = {1},
pages = {475--491},
year = {2015}
}
2014
R. J. Evans
,
T. S. Richardson
,
Markovian acyclic directed mixed graphs for discrete data, Annals of Statistics, vol. 42, no. 4, 1452–1482, 2014.
@article{evans:14,
author = {Evans, R. J. and Richardson, T. S.},
journal = {Annals of Statistics},
number = {4},
pages = {1452--1482},
archiveprefix = {arXiv},
eprint = {1301.6624},
title = {Markovian acyclic directed mixed graphs for discrete data},
volume = {42},
year = {2014}
}
2013
R. J. Evans
,
A. Forcina
,
Two algorithms for fitting constrained marginal models, Computational Statistics and Data Analysis, vol. 66, 1–7, 2013.
@article{evans:forcina:13,
author = {Evans, R. J. and Forcina, A.},
journal = {Computational Statistics and Data Analysis},
pages = {1--7},
title = {Two algorithms for fitting constrained marginal models},
volume = {66},
year = {2013}
}
I. Shpitser
,
T. Richardson
,
R. J. Evans
,
J. Robins
,
Sparse nested Markov models with log-linear parameters, in Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI-13), 2013, 576–585.
@inproceedings{shpitser:13,
author = {Shpitser, I. and Richardson, T.\\~{}S. and Evans, R. J. and Robins, J.\\~{}M.},
booktitle = {Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI-13)},
title = {Sparse nested Markov models with log-linear parameters},
pages = {576-585},
year = {2013}
}
R. J. Evans
,
T. S. Richardson
,
Marginal log-linear parameters for graphical Markov models, Journal of the Royal Statistical Society: Series B, vol. 75, no. 4, 743–768, 2013.
@article{evans:13,
title = {Marginal log-linear parameters for graphical {M}arkov models},
author = {Evans, R. J. and Richardson, T. S.},
journal = {Journal of the Royal Statistical Society: Series B},
volume = {75},
number = {4},
pages = {743--768},
year = {2013},
publisher = {Wiley Online Library}
}
2012
R. J. Evans
,
Graphical methods for inequality constraints in marginalized DAGs, in Machine Learning for Signal Processing, 2012.
@inproceedings{evans:12,
author = {Evans, R. J.},
booktitle = {Machine Learning for Signal Processing},
organization = {IEEE},
title = {Graphical methods for inequality constraints in marginalized {DAGs}},
year = {2012}
}
I. Shpitser
,
T. Richardson
,
J. M. Robins
,
R. J. Evans
,
Parameter and Structure Learning in Nested Markov Models, in UAI Workshop on Structure Learning, 2012.
@inproceedings{shpitser:12,
author = {Shpitser, I. and Richardson, T.S. and Robins, J. M. and Evans, R. J.},
booktitle = {UAI Workshop on Structure Learning},
title = {Parameter and Structure Learning in Nested {M}arkov Models},
year = {2012}
}
2011
T. S. Richardson
,
R. J. Evans
,
J. M. Robins
,
Transparent parameterizations of models for potential outcomes, Bayesian Statistics, vol. 9, 569–610, 2011.
@article{richardson:11,
title = {Transparent parameterizations of models for potential outcomes},
author = {Richardson, T. S. and Evans, R. J. and Robins, J. M.},
journal = {Bayesian Statistics},
volume = {9},
pages = {569--610},
year = {2011},
publisher = {Oxford University Press New York}
}
2010
R. J. Evans
,
T. S. Richardson
,
Maximum likelihood fitting of acyclic directed mixed graphs to binary data, in Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI-10), 2010, 177–184.
@inproceedings{evans:10,
author = {Evans, R. J. and Richardson, T. S.},
booktitle = {Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI-10)},
pages = {177-184},
title = {Maximum likelihood fitting of acyclic directed mixed graphs to binary data},
year = {2010}
}