-
Computational Statistics
-
Machine Learning
-
Statistical Methodology
-
Statistical Theory
Computational Statistics
Machine Learning
Statistical Methodology
Statistical Theory
Faculty

George Deligiannidis
Computational Statistics, Monte Carlo methods

Arnaud Doucet
Computational Statistics, Monte Carlo methods

Geoff Nicholls
Statistical modeling, Bayes Methods, Monte Carlo Methods.

Tom Rainforth
Machine learning, Bayesian inference, Probabilistic programming, Deep generative models
Post-docs

M. Azim Ansari
Statistical Genetics, Evolution, Host Pathogen Interactions, Computational Biostatistics, Machine Learning, Bayesian Statistics

Emile Mathieu
Probabilistic inference, Deep learning, Generative models, Representation Learning, Geometry

George Nicholson
Computational biostatistics, machine learning, precision medicine
Graduate Students

Shahine Bouabid
Kernel Methods, Gaussian processes, Climate emulation

Anthony Caterini
High-Dimensional Statistics, Monte Carlo Methods, Variational Inference

Sam Davenport
Gaussian Processes, fMRI data, Resampling methods, Random Field Theory

Fabian Falck
Probabilistic Deep Learning, Deep Generative Models, Causality, Applications in Health

Tyler Farghly
Learning theory, Optimisation, Monte Carlo methods

Edwin Fong
Bayesian inference under model misspecification, Bayesian nonparametrics

Adam Foster
Probabilistic machine learning, deep learning, unsupervised representation learning, optimal experimental design, probabilistic programming

Frauke Harms
combinatorics, computational complexity, Bayesian nonparametrics, machine learning, stochastic geometry

Bobby He
Machine learning, deep learning, uncertainty quantification

Desi R. Ivanova
Bayesian Inference, Statistical Machine Learning, Optimal Experimental Design

Jannik Kossen
Active Learning, Bayesian Deep Learning, Transformers

Francesca Panero
Bayesian random graphs, Bayesian nonparametrics, disclosure risk

Emilia Pompe
MCMC methods, Bayesian statistics

Tim Reichelt
Probabilistic Programming, Probabilistic Inference

Tim G. J. Rudner
Probabilistic inference, reinforcement learning, Gaussian Processes

Jean-Francois Ton
Kernel methods, Meta-learning

Hanwen Xing
Computational methods, Bayesian inference

Schyan Zafar
Monte Carlo methods, Multivariate stochastic processes
Alumni
- Louis Aslett
- Marco Battiston
- Benjamin Bloem-Reddy
- Ryan Christ
- Bradley Gram-Hansen
- Leonard Hasenclever
- Ho Chung Leon Law
- Juho Lee
- Zhu Li
- Thibaut Lienart
- Xiaoyu Lu
- Simon Lyddon
- Chris J. Maddison
- Kaspar Märtens
- Xenia Miscouridou
- Valerio Perrone
- Dominic Richards
- Andrew Roth
- Patrick Rubin-Delanchy
- Sebastian Schmon
- Stefan Webb
- Matthew Willetts
- Chieh-Hsi (Jessie) Wu
- Yuan Zhou