-
Computational Statistics
-
Machine Learning
-
Statistical Methodology
-
Statistical Theory
Computational Statistics
Machine Learning
Statistical Methodology
Statistical Theory
Faculty
François Caron
Statistical Machine Learning, Bayesian methods, Bayesian nonparametrics, Statistical Network Analysis
Arnaud Doucet
Computational Statistics, Monte Carlo methods
Chris Holmes
Decision theory, biostatistics and precision medicine, probabilistic learning under model misspecification
Tom Rainforth
Machine learning, Bayesian inference, Probabilistic programming, Deep generative models
Patrick Rebeschini
Learning theory, Optimization, Implicit Regularization
Dino Sejdinovic
Statistical machine learning, kernel methods, nonparametric statistics
Yee Whye Teh
Bayesian nonparametrics, probabilistic learning, deep learning
Post-docs
Emile Mathieu
Probabilistic inference, Deep learning, Generative models, Representation Learning, Geometry
Graduate Students
Moustafa Abdalla
Multi-view Learning, Time-series modelling, Statistical Genetics, Drug Development, High-throughput screening
Freddie Bickford Smith
Deep Learning, Uncertainty Estimation
Shahine Bouabid
Kernel Methods, Gaussian processes, Climate emulation
Anthony Caterini
High-Dimensional Statistics, Monte Carlo Methods, Variational Inference
Sam Davenport
Gaussian Processes, fMRI data, Resampling methods, Random Field Theory
Emilien Dupont
Deep Learning, Generative Models
Fabian Falck
Probabilistic Deep Learning, Deep Generative Models, Causality, Applications in Health
Tyler Farghly
Learning theory, Optimisation, Monte Carlo methods
Jake Fawkes
Causal Inference, Machine Learning, Fairness
Edwin Fong
Bayesian inference under model misspecification, Bayesian nonparametrics
Adam Foster
Probabilistic machine learning, deep learning, unsupervised representation learning, optimal experimental design, probabilistic programming
Adam Goliński
Probabilistic Inference, Probablistic Programming
Aidan N. Gomez
Neural networks and deep learning
Frauke Harms
combinatorics, computational complexity, Bayesian nonparametrics, machine learning, stochastic geometry
Bobby He
Machine learning, deep learning, uncertainty quantification
Robert Hu
Machine Learning, Kernel Methods, Causal Inference
Desi R. Ivanova
Bayesian Inference, Statistical Machine Learning, Optimal Experimental Design
Jannik Kossen
Active Learning, Bayesian Deep Learning, Transformers
Charline Le Lan
Probabilistic Inference, Deep Learning, Reinforcement Learning
Cong Lu
Deep Reinforcement Learning, Meta-Learning, Bayesian Optimisation
Ning Miao
Deep generative models
Francesca Panero
Bayesian random graphs, Bayesian nonparametrics, disclosure risk
Emilia Pompe
MCMC methods, Bayesian statistics
Tim Reichelt
Probabilistic Programming, Probabilistic Inference
Tim G. J. Rudner
Probabilistic inference, reinforcement learning, Gaussian Processes
Yuyang Shi
Statistical Machine Learning, Deep Learning, Generative Models
Jean-Francois Ton
Kernel methods, Meta-learning
Jin Xu
Meta-learning, equivariance in deep learning
Sheheryar Zaidi
Statistical Machine Learning, Deep Learning
Alumni
- Fadhel Ayed
- Marco Battiston
- Benjamin Bloem-Reddy
- Giuseppe Di Benedetto
- Seth Flaxman
- Bradley Gram-Hansen
- Leonard Hasenclever
- Yunlong Jiao
- Hyunjik Kim
- Adam R. Kosiorek
- Ho Chung Leon Law
- Juho Lee
- Zhu Li
- Thibaut Lienart
- Xiaoyu Lu
- Simon Lyddon
- Chris J. Maddison
- Kaspar Märtens
- Xenia Miscouridou
- Jovana Mitrovic
- Konstantina Palla
- Valerio Perrone
- Dominic Richards
- Sebastian Schmon
- Joost van Amersfoort
- Stefan Webb
- Matthew Willetts
- Chieh-Hsi (Jessie) Wu
- Qinyi Zhang
- Yuan Zhou